Tidal stream energy
Tidal stream energy, a high-potential sector still in the making
Systems that recover the kinetic energy of tidal currents have three major advantages: discretion, compactness and predictable production. There are many types of converters, but the most common are turbines, either horizontal or vertical axis, similar to wind turbines. The systems are either bottom-fixed or floating. With three pilot farms and numerous proven full-scale demonstrators, Europe is the world leader in tidal turbines. The most advanced developers now have thousands of operating hours under their belts and have injected large volumes of electricity into the grid. The tidal stream energy sector, mostly made up of small innovative companies, receives significant financial support from the European Union and the Member States concerned. It is currently in the process of developing, and is focusing its efforts on economic performance to ensure industrial development.
Profitability in the heart of challenges of tidal stream energy
In order to develop fully in Europe and internationally, the tidal stream energy sector must meet several challenges:
- Profitably exploiting highly localised resources by orienting the sector more towards a market for which direct competition from mass power generation is less decisive, such as that of islands or offshore coactivity;
- Reducing the investment cost, which is still much higher than that of offshore wind energy;
- Improving the sustainability of systems that are subject to strong and sometimes turbulent sea currents, but also to the development of biofouling on key components;
- Gaining in reliability to minimise maintenance operations and the extremely high associated costs;
- Having tools and methods for the deployment of farms and their optimisation from a technical and economic point of view;
- Achieving successful environmental integration by minimising impacts on marine life, both benthic and pelagic communities;
- Being an integral part of the use of maritime space, notably by ensuring compliance with regulations and working for the acceptability of projects.
France Energies Marines became interested in the challenges of tidal stream energy at a very early stage and continues to meet the needs of the sector thanks to R&D activities dedicated to this sector or dealing with cross-cutting aspects of the various ocean energies.
Quantification of the resource, removal of technological locks and environmental integration
Several R&D projects set up and piloted by France Energies Marines have focused on the Alderney Race area with high tidal stream potential off the Cotentin peninsula. The interaction between winds, waves and currents was thus examined in order to assess its influence on the resource at seafloor level (HYD2M project). The turbulence of currents induced by their interactions with the seabed or the coast was also studied for applications related to the design of tidal turbines (THYMOTE project). A particular focus was carried out on the dynamics of sediments, and in particular pebbles, in the presence of strong tidal currents in order to anticipate the possible impacts on the turbines that would be installed in the area (PHYSIC project).
The R&D carried out by the Institute, its members and partners, also carries out innovative studies to lift specific technological locks: long-term stability of underwater glue joints (INDUSCOL project), behaviour of dynamic export cables of floating systems (OMDYN and OMDYN2 projects), polyamide mooring solutions (POLYAMOOR, MONAMOOR and BAMOS projects), monitoring of mooring lines (MHM-EMR project) and optimisation of control systems (ELEMENT project).
The environmental effects of tidal turbines are considered together with the passive acoustic monitoring of benthic species (BENTHOSCOPE and BENTHOSCOPE2 projects), the characterisation and quantification of biofouling on underwater structures (ABIOP, ABIOP+, ELEMENT and BIODHYL projects), the study of the potential impact of electromagnetic emissions on marine species (SPECIES project) and the quantitative assessment of metals released into the marine environment from galvanic anodes (ANODE project).
Collaborative R&D work is also carried out at the farm scale, mainly to develop numerical design and optimisation tools (VALARRAY and DTOCEANPLUS projects), but also to estimate the stability of power export cables in the high-stream environments (STHYF project) or to propose a multi-criteria optimisation for the supply of isolated grid (OPTILE project).
Representation and participation in tidal energy R&D networks
France Energies Marines is strongly involved in several international initiatives dedicated to supporting ocean energies in terms of R&D:
- Support for the implementation of the European strategic plan for tidal and wave technologies (OCEANSET project),
- Technology Collaboration Program to provide an accurate view of the entire sector (TCP/OES),
- Monitoring the environmental effects of the development of these energies (OES-Environmental).
List of publications related to tidal stream energy (PDF)
Photo credit: Sabella
Projects
Closed
DTOCEANPLUS
Advanced design tools for ocean energy systems innovation, development and deployment
Closed
ELEMENT
Effective lifetime extension in the marine environment for tidal energy
In progress
OPTILE
Multi-criteria optimisation for offgrid marine renewable electrical production
Closed
ABIOP+
Consideration of biofouling using quantification protocols useful for engineering
In progress
BAMOS
Behaviour and ageing of mooring using synthetic rope
In progress
BIODHYL
Biofouling characterization and description of hydrodynamic loadings
Closed
MONAMOOR
Modelling and monitoring of polyamide mooring lines
Closed
OCEANSET
Support implementation of the ocean energy component of the SET-Plan
In progress
OES-ENVIRONMENTAL
Collaborative initiative for monitoring the environmental effects of ocean energy development
Closed
POLYAMOOR
Durable and flexible polyamide moorings for offshore renewable energies
Closed
SPECIES
Subsea power cables interactions with environment and associated surveys
In progress
IEA-OES
Technology Collaborative Programme on Ocean Energy Systems
Closed
ABIOP
Accounting for biofouling through established protocols of quantification
Closed
AESTUS
Turbulence characterisation for tidal turbine design
Closed
ANODE
Quantitative evaluation of metals released into the marine environment from the galvanic anodes of ORE structures.
Closed
BENTHOSCOPE
Acoustic index of benthic resources on hard substrates for the assessment of impacts from tidal stream turbines
Closed
BENTHOSCOPE 2
Understanding and monitoring of ORE impacts on the benthic compartment via a measurement platform dedicated to passive acoustic
Closed
DTOCEAN
Optimal Design Tools for Ocean Energy Arrays
Closed
GHYDRO
Guide to the environmental impact evaluation of tidal stream technologies at sea
Closed
HYD2M
Alderney Race hydrodynamics: measurements and modelling
Closed
INDUSCOL
Instrumentation and durability of glued multi-material structures for offshore renewable energy systems
Closed
MUSCATTS
Multi-scale approaches at one tidal site
Closed
OMDYN
Dynamic umbilicals for offshore renewable energies
Closed
PHYSIC
Sediment transport processes in the presence of intense currents
Closed
STHYF
Seabad cable stability and hydrodynamics
Closed
THYMOTE
Tidal turbulence: modelling, field observations and tank experiments
Closed
VALARRAY
Optimisation software for tidal and floating offshore turbine arrays: state of the art, comparison and new tools specification
Services
Renewable floating system design and optimisation
Media library
Videos
Interlocutors
Jean-Francois Filipot
Site Characterisation R&D Manager
Ludovic Noblet
Development and Valorisation Director
News
Published on 20/12/2023
CFI At sea cable monitoring
Learn morePublished on 02/11/2023
Monitoring of dynamic cables
Learn morePublished on 12/04/2023
PhD Defence – Biofouling and ORE
Learn morePublished on 22/03/2023
A buoy to study moorings
Learn morePublished on 16/03/2023
Decarbonising the island grids
Learn morePublished on 20/02/2023
Polyamide and mooring
Learn morePublished on 06/02/2023
Biofouling is a phenomenon to be taken into account
Learn morePublished on 04/10/2022
MONAMOOR faces
Learn morePublished on 22/07/2022
Biofouling and engineering
Learn morePublished on 09/03/2022
IEA-OES 2021 report
Learn morePublished on 08/02/2022
Mooring and biofouling
Learn morePublished on 02/08/2021
A biofouling observatory in the Atlantic
Learn morePublished on 06/10/2021
Characterising the thermal resistance of biofouling
Learn morePublished on 11/05/2021
A buoy to study biofouling
Learn morePublished on 12/03/2021
IEA-OES releases its 2020 Annual Report
Learn morePublished on 04/01/2021
New chair for TCP/OES
Learn morePublished on 02/02/2021
COME3T, phase II
Learn morePublished on 02/11/2020
2020 Scientific and technical Tribune
Array integration and optimisation in the spotlight
Learn morePublished on 06/10/2020
FEM Tribune – Influence of biofouling webinar
Learn morePublished on 28/09/2020
FEM Tribune – Seabed dynamics webinar
Learn morePublished on 21/09/2020