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Executive Summary

Marine Renewable Energy (MRE) systems involve single or arrays of devices that
are secured to the seafloor via foundations and/or anchors. These MRE devices will
transmit long-term cyclic loads to the seafloor sediment or rock, which may affect
seafloor material properties and hence the overall physical performance of the MRE
system. The response of seafloor sediments or rock formations is uncertain for the
novel MRE systems and especially large arrays of 10s to >1000s of devices. This
report summarizes critical inputs and tools for the design and analysis of
foundations, anchors, and the response of the seafloor materials. Followed by an
introduction in Section 1, Section 2 reviews the offshore structure and MRE literature
to highlight current approaches and needed inputs for assessing interactions
between foundations or anchors and seafloor materials, including potential
environmental impacts. Section 3 addresses relevant marine geological settings that
control key geotechnical engineering properties. Data collection activities are
described, including in-situ site surveys and laboratory testing. Section 4 considers
the unique interactions between MRE systems and seafloor materials, particularly
cyclic loading and sediment response. Section 5 describes analytical and numerical
tools and associated inputs for the design process of MRE foundations and anchors.
Constitutive models are key to simulating sediment response and thus are discussed
in detail. Important summary tables relate key variables of geology, geotechnical
parameters, foundation or anchor type, and quantitative assessment tools including
numerical analysis. Section 5 also addresses the incorporation of the geotechnical
analysis into system-level tools to support decision making for MRE arrays. Section

6 presents conclusions and recommendations for future work.
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1. INTRODUCTION

Marine Renewable Energy (MRE) systems will transmit long-term cyclic and less-
frequent relatively extreme loads to foundations and anchors that connect them to
the seafloor. MRE arrays may involve 10s to >1000s of devices over areas up to
several square kilometres [1]. Deployment capacity by 2050, for the United Kingdom
as an example, is estimated to be 27 GW for wave and tidal energy devices [2].
Many devices may be tethered to a single anchor, thus creating fully three-
dimensional, static and dynamic loading scenarios. The response of seafloor
sediments or rock formations is uncertain and poses risks to performance [3]. As
foundations and anchors represent a primary cost to construction and maintenance
of MRE systems [4, 5], success of this new industry depends on interactions

between seafloor materials and foundations and anchors.

This report presents critical inputs and tools for the design of foundations and
anchors for MRE arrays and systems. Section 2 reviews the offshore structure and
MRE literature to highlight current approaches and needed inputs for assessing
interactions between foundations or anchors and seafloor materials, including
potential environmental impacts. Section 3 addresses relevant marine geological
settings that control key geotechnical engineering properties. Data collection
activities are described, including in-situ site surveys and laboratory testing. Section
4 considers the unique interactions between MRE systems and seafloor materials,
particularly cyclic loading and sediment response. Section 5 describes analytical and
numerical tools and associated inputs for the design process of MRE foundations
and anchors. Constitutive models are key to simulating sediment response and thus
are discussed in detail. Important summary tables relate key variables of geology,
geotechnical parameters, foundation or anchor type, and quantitative assessment
tools including numerical analysis. Section 5 also addresses the incorporation of the
geotechnical analysis into system-level tools to support decision making for MRE

arrays. Section 6 presents conclusions and recommendations for future work.
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2. LITERATURE REVIEW ON MRE FOUNDATIONS AND ANCHORS
2.1 Special Foundation-Anchor Design Needs

MRE devices are a unique application for foundations and anchors, especially for
full-scale arrays [1]. It is necessary that several criteria specific to these devices are
satisfied for design, installation, and maintenance. A brief overview of these criteria
is provided in this section. For further information, the reader is directed to the report
DTOcean Deliverable 4.1 — A comprehensive assessment of the applicability of
available and proposed offshore mooring and foundation technologies and design

tools for array applications [6] as well as more general reference documents [7].

Figure 1. (left) Alstom/TGL 1-MW turbine (image source: [8]) and (right) Uppsala
University wave power plant (image source and copyright: Karl Astrand and Division
for Electricity, Uppsala University; [9]).

The operational requirements of an MRE device will dictate the way in which a
durable connection with the seabed must be provided. The primary requirement of
the connection is to maintain the position of the device either rigidly (i.e., tidal
turbines on fixed support structures [10]) or allow device motions to occur which are
within acceptable limits (e.g., the compliant mooring system of the wave energy
converters shown in Figure 1). In the latter case, the support structure and
foundation are an integral part of the power take-off system, illustrating the unique
requirements of the foundation in this application. The design of the support structure

may preclude incompatible anchor and foundation types (e.g., Table 1). As will be
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Foundation Anchor
Piled | GBS 2::;2%? Fluke | 2| pile | Gravity
caissons

Pile v v

Moored v v v v
% Tethered v v v
g Sheath system | v/ v
‘§_ Guyed tower v v v
(%' Telescopic v v

Shroud v v v

Jacket v v v

1Gravity—based structures
%\/ertical-load anchor

Table 1. Compatibility matrix for tidal turbine foundations and anchors.

discussed in this report, initial design selections such as these will determine which
analysis techniques are used to determine the seafloor material response (see
Section 5).

Guidance produced by certification agencies such as Det Norske Veritas is used to
ensure that the designed and specified components are adequately durable and
reliable for the application (e.g., [11]). Component durability incorporates the
capacity to withstand infrequent peak loads as well as the effects of load cycling,
environmental exposure, and changes in material properties over time. Reliability
requirements are likely to be specified over different time-scales (i.e., over the entire
deployment lifetime or between maintenance and/or replacement intervals).
Guidance on these aspects exists for MRE devices, such as DNV-0OSS-312 [12], the
DNV/Carbon Trust Guidelines on design and operation of wave energy converters
[13], and forthcoming International Electrotechnical Commission/TC 114 guidelines
[14]. These documents largely refer back to existing offshore guidance for
foundations and anchors (e.g. DNV-OS-C101 [15] for steel structures and DNV-OS-
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E301 Position Mooring [16]) with consequence criteria modified for this new
application. Whilst insight into MRE foundation and anchor durability and analysis is
provided by a few studies (e.g., [17]), in the absence of deployment examples
lessons can be learnt from similar foundations used in different applications, such as

offshore wind turbines [18] and offshore platforms [19].

The economics of foundations and moorings will have a significant influence on
which technology is selected. With the exception of off-the-shelf components (such
as anchors and connecting hardware), costs are design dependent and highly
variable (i.e., the commodity cost of steel [20]). Indicative capital costs for monopile
installations can be drawn from the offshore wind industry, such as the UK Energy
Research Centre’s Great Expectations report [21]. Installation, maintenance, and
decommissioning costs bring added complexity due to the variability of vessel and
equipment day rates and accessibility (e.g., weather windows [22]). In addition to the
cost-scalability of arrays, shared mooring, and foundation infrastructure for arrays of
devices is a possible way of achieving capital cost savings as well as a way of
reducing the number and difficulty of installation, maintenance, and/or

decommissioning operations [23, 24].

The seafloor geotechnical response of full-scale arrays of 10s to >1000s of devices
is of major importance to the physical performance of MRE systems. Previous MRE-
specific work mainly focuses on hydrodynamics of the MRE system and not
foundation and/or anchor response for devices in an array [1, 25-27]. More general
offshore foundation and anchor literature focuses on the design and response of
single foundations and anchors (for example, see [28]). Recent work such as [29]
indicate that geological heterogeneity of seafloor sediments and bedforms may
impact array layouts, design, and performance. Future research is needed to
determine if arrays designed for maximum power output or other factors also satisfy
geological limitations on foundation and anchor design. Of concern is the possibility
of free drifting devices from failures of anchoring systems (e.g., due to unexpected

dynamic loading to anchors), which then may affect neighbouring devices.
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The assessment of anchoring and foundation systems will include determining
environmental impact during the lifetime of the project. Installation operations have
been identified as a potential source of noise, which could have negative
environmental impacts [30], particularly noise during the installation of large piles
(e.g., [31]). Monitoring and assessment of impact is not a trivial issue, particularly
when background noise levels are significant and thus make noise source
identification difficult [32]. The presence of the mooring or foundation system may be
a migratory barrier or collision risk to marine species, but also provide habitat [33].
MRE arrays, such as tidal-stream turbines, may impact water level, tidal currents,
sediment transport, and bacteria levels at great distances (e.g., in the tens of
kilometres, see [1]). Further research is required to determine potential

environmental impacts of anchors and foundations in this new application.
2.2 Relevant Literature for Sediment-Foundation Interactions

Detailed guidelines, best practices, handbooks, and textbooks exist for the general
design, installation, and maintenance of offshore structures and associated
foundations and anchors, including regional and site specific surveys and laboratory
testing [28, 34, 35]. Much of this information is highly relevant for arrays of MRE
devices, although the information is not directly targeted at array design. MRE-
specific guidance is rapidly developing (e.g., see [36, 37]). Recent work highlights
MRE-specific concerns. Barrie and Conway [29] present seabed characterization
results for potential tidal, wave, and wind-energy MRE resources for the Pacific
offshore of Canada. Their results indicate that subaqueous dune fields, mobile gravel
lag, and boulder pavements, a result of a combination of climatic and eustatic sea
level change and tectonic processes, can greatly impact local site development for
MRE. Geological environments thus control geotechnical properties of seafloor
materials, and foundation or anchor types are appropriate for certain sediment or
rock types (see Section 5 for more detail; also see [28] for a summary of foundation-
anchor types and performance for marine sediment types). Recent work
investigating the effect of tidal- or current-turbine MRE systems on sediment

transport indicates turbines can alter flow patterns and lead to local scour around
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seafloor structures [38], and sediment transport can be affected far (i.e., 15 km) from
turbine arrays [1]. Altered patterns of flow within an array may lead to different loads
on foundations and/or anchors that are placed at the margins or within an array of
MRE devices. Thus, loading may be in part a function of the location of a foundation
or anchor in a full-scale array of many devices. Foundation and anchor design may
therefore need to address array size, impacts on local loads within an array, and the
potential for cascading failure caused by an initial single failure within an array, and
impact due to the location where a failure of a single device first occurs. The wind
power industry may offer analogous examples of how to cope with different loads

and foundation response due to placement of a device within a large array.

Literature on cyclic behaviour on marine sediment interaction with foundations and
anchors is extremely important, as MRE systems will transmit cyclic loads (see
Section 4 for information on MRE loading cases). Le et al. [39] study offshore wind
farms and cyclic loading and failure of a marine clay with laboratory cyclic triaxial and
shear testing, as a function of the total number of cycles and the average shear
stress. A variety of cyclic-loading related studies, not specifically for tidal, current, or
wave MRE, are still relevant and provide important background information for future
work [3, 40-44]. The cyclic studies indicate potential failure processes due to
strength and stiffness degradation, as a function of the magnitude and total number
of the cyclic loads; a variety of laboratory and in-situ testing attempts to capture
sediment response through initial, reloading, and unloading cycles. The constitutive
behaviour of the sediments is key to performance of offshore support structures
under cyclic loading [3]. Cyclic constitutive behaviour is thus discussed in detail with
examples in Section 5, which address tools and inputs for quantitative analysis of
foundations and anchors for MRE. Pertaining to MRE arrays of devices, excess pore
pressure near to the foundation or anchor of a single device may possibly interact
with adjacent foundations or anchors, depending on sediment permeability, anchor
spacing, and the magnitude of the of excess pore pressure. (For more detail on

excess pore pressure, see Section 4.)
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3. SEAFLOOR GEOLOGY AND MATERIAL PROPERTIES
3.1 Seafloor Geologic Environments and Materials

In the DTOcean project, the primary seafloor geologic environments for MRE arrays
are those of the continental shelves, for water depths of approximately 0—200 m.
These include relatively high-energy tidal and ocean current environments of
nearshore regions and the open shelf, as defined in the DTOcean deliverable D1.1:
Detailed deployment scenarios for wave and tidal energy converters [45]. Relatively
lower-energy, weak wave action, sediment-choked nearshore environments are

excluded, such as lagoons, tidal flats, and deltas.

A continental shelf is the portion of the seafloor immediately adjacent to the
continent, which slopes seaward at an average value of ~1° [46]. Its boundary is
defined by an increase in slope to ~4°, which divides it from the deeper seafloor
regions of the continental slope, the continental rise, and the abyssal plain.
Continental shelves vary in width depending on whether the margins of the
continents are passive or active in terms of plate tectonics. The width of continental
shelves average only a few kilometres at the Pacific coast of North and South
America, and are greater than 1000 km in the Arctic Ocean [46]. Topography of
continental shelves range from smooth to irregular, depending on tectonic history,
sediment transport and deposition, and sea level change over geologic timescales
[29, 46, 47].

The relevant environments are typically dominated by terrigenous sediments [28,
48], which are derived by erosion of the adjacent continents. Typical composition of
these sediments includes quartz, feldspar, and clay minerals. Sediment grain size
can vary greatly (i.e., clay-sized at <4 ym to silt, sand, and up to boulder), depending
on the sediment source and particular marine environment. The seafloor may also
include pre-existing sediment or rock formations onto which the ocean may
transgressed (due to changes in sea level over geologic time), or volcanic rock
associated with islands or seamounts. Biogenous (i.e., derived from carbonate or

siliceous hard parts of marine organisms) and hydrogenous (i.e., precipitated

Doc: DTO_WP4 _SNL _D4.2
Rev: 1.0

Date: 24.04.2014
13



A

DTOcean
»=={ /~¥ <L )=  Deliverable 4.2 - MRE Foundation Analysis iy

chemically from seawater) sediments [48] will probably be a minor component of
seafloor materials for the desired environments for MRE; the deep, open ocean
away from the continental margins is typically dominated by siliceous and carbonate

biogenous sediments (see [48] for further information).

The distribution of sediments of different grain sizes and their style of layering or
internal structure depends on the sediment source, transport, and depositional
processes. The tidal-, wave-, and/or storm-dominated nearshore and open shelf
environments exhibit a great range of sediment types, bedforms (e.g., subaqueous
dunes), and heterogeneity [47, 49]. The marine geology thus plays a major role in
controlling the distinct material geotechnical engineering properties of the sediments.
Since certain foundation and anchors perform better in some sediments or rock
types than others, knowledge of the marine geological environment and sediment
distribution is key (Section 5 introduces the explicit constitutive relationships between

seafloor materials and foundation and anchor performance).

Site surveys for geological and geotechnical properties for MRE systems include
gathering information from previous studies, the so-called “Desk Top Study” and site-
specific investigations. The Marine Geotechnical Engineering Handbook [28] lists
several sources on seafloor material properties, including universities and
government organizations (mainly in the U.S.), journal, and conference proceedings.
The handbook also gives details on several types of recommended regional to site-
specific surveys that apply to foundations and anchor types that can be used for
MRE. The EU-funded MESH (Mapping European Seabed Habitats) project has been
collating a large amount of mapping data (some of it dating back as far as 1870),
which document seabed habitats and landscapes. An example of the mapping data

is shown in Figure 2.
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Figure 2. Example of a seabed landscape map of the seas around the southern UK.

Regional surveys can include acoustic reconnaissance for seafloor bathymetry and
subbottom layering (e.g., sidescan sonar), limited seafloor material sampling (e.g.,
grab or dredge samplers, gravity corers, and vibracorers), and direct visual
observation (e.g., underwater video camera; see for more detail [28, 29] on such
data collection techniques). Site-specific surveys can include additional geophysical
data collection at close survey line sampling for higher resolution seafloor and
subbottom profiling. Sampling for laboratory testing should include relatively
undisturbed samples for certain geotechnical tests (e.g., triaxial testing) that depend
on original sediment structure. In-situ cone penetrometer, dynamic penetrometer,
pressuremeter (based on expansion of an in-situ membrane within a borehole), and
vane shear tests are also recommended for strength testing and sediment or soil
classification (see the Marine Geotechnical Handbook [28], Chapter 2). Geophysical
borehole logging techniques are also available, the techniques of which can

characterize geological (e.g., layering), mechanical, and flow properties, but at
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relatively higher cost. It may be possible for site planners to use existing data to
minimize costs. There are some open source data available on the seafloor
landscape (e.g., such as the MESH project). Within the oil and gas arena, data from
surveys are considered to be valid for certain time windows [50]; it could therefore
follow that any previous survey data could be used when deciding what surveys
need to be conducted. The full suite of sampling may be dictated by risks of failure
(e.g., due to specific sediment and foundation/anchor types, such as anchor pullout
versus foundation overturning), the specific geological environment, and regulatory

requirements.

The UK has not produced any legislation regarding the regulation of surveying the
seabed. There are some non-mandatory guidelines available when using seismic
equipment [51], produced by the Joint Nature Conservation Committee (JNCC),
which is part of the Department of Environment, Food and Rural Affairs (DEFRA).
The use of Marine Mammal Observers are recommended and is also mentioned in
the 2007 Code of Practice for the Protection of Marine Mammals during Acoustic
Seafloor Surveys in Irish Waters [52]. A requirement of the Food and Environmental
Protection Act is that surveys have to be carried out to determine levels of scour
around wind turbine foundations and cables, as well as sediment contamination,
sediment suspension, and impacts due to marine life [53]. This may also therefore
be necessary for MRE devices and arrays.

3.2 Seafloor Geotechnical Parameters

Figure 3 presents a qualitative summary diagram on the progression from marine
geological environment, to sediment type, to geotechnical engineering properties,
and finally to foundation and anchor selection and performance. Prediction of
foundation and anchor performance, in general, requires knowledge of sediment
type and geotechnical or so-called engineering properties. Figure 3 summarizes
sediment type data, including Atterberg limits, grain size, and texture (e.g., sorting
and angularity); engineering properties include metrics for the degree of cohesion,

shear strength (under drained or undrained conditions for sands or lower
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permeability materials), stiffness, swell index, and friction angle, all of which are
affected by the amount of sand versus clay. The bottom portion of Figure 3 presents
information on the relative physical performance of different foundations or anchors,
given a sediment type (based on information from [28]). See the Handbook for
Marine Geotechnical Engineering [28] for detailed descriptions of these parameters
and their use in general foundation and anchor design. In Section 5, we present
further information on more sophisticated numerical modelling analyses and
associated parameterization of constitutive models from laboratory or field testing,
which includes cyclic triaxial testing, and cyclic shear testing, centrifuge, and other
testing. Section 5 also includes a flow chart for foundation and anchor design and
assessing seafloor sediment response, which uses information from the major

sections of Figure 3.

4. INTERACTIONS BETWEEN MRE SYSTEMS AND SEAFLOOR MATERIALS

Specific performance requirements for MRE foundations and anchors arise from the
loads applied to and the response of the seafloor materials. Of particular interest is
the long-term “fair weather” cyclic loading with less frequent higher magnitude
loading due to storm conditions, rogue waves, or highly dynamic device motions.
MRE systems are novel and thus previous foundation and anchor designs from other
applications may not have considered the specific MRE loading cases for single
devices to large-scale arrays with possible multiple devices connected to shared
foundation or anchor points. Previous work has considered some interactions from
the wake of arrays of tidal turbines for determining spacing and power, but not any
impacts on foundations or anchors (e.g., see [25]).

Seelig [54] describes the following three categories of cyclic loading for direct-

embedment anchors [54]:

1) cyclic line loadings and subsequent loss in strength of seafloor sediment

immediately surrounding the anchor;
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2) cyclic line loadings that cause accumulated movement or creep of anchors
into shallower sediments, resulting in loss of short-term static holding
capacity; and

3) earthquake-induced loading that causes loss in sediment strength and anchor

failure.

In general, the impact on sediment strength due to cyclic loading is dependent on the
time-scale of pore fluid flow in the sediments and the dissipation of excess pore
pressure. If pore water drainage cannot occur quickly enough under the cycles of
loading, the undrained shear strength will control sediment failure. Stiffness and
strength degradation can also occur as deformation accumulates due to repeated
loading and unloading [3, 40]. Interaction of excess pore pressure between devices
in an MRE array may be a possible concern, which will depend on device spacing,
the magnitude of excess pore pressure, and sediment permeability. Seelig [54]
describes loss in strength due to anchor creep as dependent on sediment type,
state, and the type of cyclic loading. Another major concern for cyclic loading in
general is liquefaction or the condition of excess pore pressure under which
sediments lose strength and behave like a liquid [3, 40, 55], which may need to be
considered during foundation or anchor emplacement and during cyclic loading
without sufficient dissipation of excess pore pressure in relatively low permeability
sediments. Sediment characteristics that mitigate cyclic-induced strength loss
include [54]:

e denser sediment (i.e., relatively higher unit weight);
e higher yield strength and strain-hardening behaviour;
¢ lower magnitude of cyclic loading; and

e lower frequency of total load cycles over the device lifetime.

Possible loading cases for floating and fixed MRE devices are given in Table 2,

including information for devices tethered or attached to single or multiple foundation
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* ot
o

Wave Energy Arrays

Tidal Stream Arrays

interactions between devices

Fixed Floating Fixed Floating
Example Device Oyster Pelamis | AR-1000 | SR250kW
Turbine rotation and blade passing (] v v
frequencies
Power Take-off and gearbox v v v v
harmonics
Wave / Tidal loading v v v v
5
2 | Wind loading v v v * vé
(&)
i
Ice loading (location dependent) v v v v
Anchor line pick-up and drop v v
Irregular loading at shared connection v v v \/
points / foundations / anchors
Turbulence (eddies and surges) v v v \/
Steep waves / storms v v v * \/ *
Tidal velocity extremes v v v \/
Wave slamming v v v * v *
g Seismic activity v v
g
= i * *
£ Wind gusts v v v v
Impact from vessels / marine life / ice v v v v
flows
Effect of anchor displacement and re- v v
embedment (drag anchors only)
Snatch loading at shared connection v v
points
Load and device response
amplification due to hydrodynamic v v v v

Table 2. Possible loading cases for wave and tidal energy devices. Loads relevant
for surface piercing structures or devices are indicated with an asterisk.
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or anchor points. Based on expected peak cyclic loads and the total number of load
cycles for the desired lifetime of the MRE devices, the capacity to withstand static
and dynamic loading as well as liquefaction and creep movement should be carefully
assessed with modelling tools (see Section 5). An example of loading during both
calm and mild storm conditions was recorded by the South West Mooring Test
Facility (Figure 4). These measurements were taken in the semi-sheltered Falmouth
Bay, Cornwall, UK. The loads during the calm conditions show that each mooring
limb experience gentle oscillations with no large spikes or anomalies. During the
storm conditions, it can be seen that, in addition to the cyclic loads being significantly

larger, there are also cases of much larger load spikes.

5. ANALYSIS OF MRE FOUNDATIONS AND ANCHORS
5.1 Design Process

Tools for the analysis of interactions between foundations, anchors, and seafloor
materials need to be evaluated for their suitability for design, installation, estimation
of maintenance timeframe, and full life-time performance assessment as a
component of a MRE system. Design of foundation and anchors depends on
seafloor material behaviour, and thus Figure 5 presents a flowchart that ties the
geological setting of a proposed MRE site to required geotechnical parameters,
seafloor foundation-anchor type, seafloor material analytical or numerical analysis,

and ultimately installation.

The design of single foundations and anchors, taking into account seafloor material
response, is an iterative process (see [28] for a general workflow, which is
summarized here). The structural configuration of an MRE device and its loads affect
the seafloor response. The geology of the site dictates the geotechnical engineering
properties. Those properties are obtained through both review of previous studies
and site-specific regional and local surveys and engineering judgement when data
are not available [28]. Key controlling factors on seafloor response include the

degree of cohesion, sediment texture (e.g., grain-size distribution, grain angularity,
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Figure 4. Tension time-series measured for the three mooring lines of the South
West Mooring Test Facility (SWMTF) during a) calm and b) mild storm conditions in
Falmouth Bay. ¢) Number of occurrences of significant axial mooring loads identified
from tension measurements for all three lines recorded during the first deployment.

Tensions are expressed in terms of the minimum break load specified by the rope
manufacturer (MBL=466kN). Further details can be found in [56].
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Site location
—1 GEOLOGY
| Select MRE device|

v

Desk top study/existing databases/
regional or prelim. site surveys (bathymetry, grab samples, etc.)
L

v
| Nearshore/proximal | Distal/open-shelf
v
|Tidal-dominated| | Wave—dominatedl IStroneg-storm influenced I Gravity-driven
undercurrent
dominated
— — —— X < GEOTECHNICAL
Initial site-specific field Sediment/soil/rock classification: ENGINEERING
and laboratory data Atterberg limits, grain size, sorting, and angularity;
collection as necessary [ specific gravity / unit weight; and
(for inputs to grain composition (quartz, feldspar, clay, etc)
constitutive models) T
[ Cohesionless coarse grained | | Cohesive silt, clay, and clay/silt/sand mixtures (or rock) |

Effective cohesion, effective friction angle,
permeability, porosity, compressive strength,
shear strength, compression and swell indices,
consolidation ratio (normal vs overconsolidated),
time rate of consolidation

Effective friction angle,
permeability, porosity,

compressive strength,
shear strength

Select foundation/anchor based on device, MRE FOUNDATIONS AND ANCHOR ARRAYS

geological and geotechnical requirements, and Boundary condition inputs from external and
properties of MRE arrays or single device internal loads (operational and extreme);
include array or single device loads as

v
Design foundation or anchor; address I necessary; geometry of arrays and seafloor
—| MRE array needs as necessary

s s “Simple” analytical versus numerical modeling:
Obtain additional needed site-specific anisotropy, heterogeneity, complex layering,
data for improved design and costing and more advanced constitutive behavior, diagenesis
to lessen uncertainty in performance (natural cementation); foundation/anchor arrays:
¢ complex geometry and loads

Site-specific data collection:
bathymetry, sidescan sonar, gravity cores,
in situ and lab engineering property testing

v
Initial designs

Hard rock may require rock bolts and
grouted ribar; scour protection determination

A 4

v

Assess cost, performance, and Install MRE single
environmental impact device or arrays

Iterate based on cost/performance metrics, l

including full-scale array power and operation Perform device and/or array maintenance;
as necessary decommission process at end of project
lifetime

Figure 5. Flow chart for the selection, design, and installation of foundations and
anchors, given geological and geotechnical properties.
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and sorting), and strength parameters. Based on knowledge of the site and
geological seafloor setting and materials, a preliminary foundation or anchor type is
selected. This foundation or anchor must generally be commensurate with the
designed function of the MRE device. Reasonable dimensions of key
foundation/anchor components are first selected. The analysis for physical
performance metrics then follows, including bearing capacity, resistance to horizontal
or vertical forces (where applicable, see Table 3), holding capacity, predilection for
creep movement of anchor, consolidation, and settlement. Several analytical
solutions are available in the literature for the foundations and anchor types given in
Table 3 (e.g., see Chapters 4-7 in the Handbook for Marine Geotechnical
Engineering, [28]). At this point, the performance must be checked against desired
function: will the performance be adequate or has the foundation/anchor been
overdesigned; is the foundation/anchor too costly in terms of materials, installation,
or maintenance? If so, it will be necessary to select more reasonable dimensions of
the foundation/anchor and continue again through the subsequent steps. The design
process will also need to include attention on potential interactions of devices in an
array, such as: tethering of multiple devices in single anchors or foundations; excess
pore pressure build-up due to overly closely spaced foundations or anchors; and
potential cascading failure through an array started by failure of a single device (see
Section 4).

Due to the complexity of the seafloor materials (e.g., layering or interbedding of
sediment types like mixtures of sand and clay, spatial heterogeneity, and anisotropy
of mechanical and hydrological properties) and MRE device and/or array loading
cases (see Table 2), most performance assessment requires commensurate
sophisticated analysis. Thus, numerical methods are warranted that can handle

scenarios that are intractable for analytical methods, as discussed in Section 5.2.

Assessment of failure mode is part of the step that addresses adequate function
design. Depending on the foundation/anchor type (and in addition to structural failure
mechanisms), failure modes may include: bearing capacity failure (e.g., leading to

rotation of the foundation), overturning (perhaps due to eccentric loads), uplifting,
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pullout, horizontal sliding or combinations of these; slow foundation displacements
(excessive consolidation settlement) including non-uniform displacement; installation
problems; and recovery problems with high resistance to breakout; and finally scour

and undermining (see [28] for further discussion, which has been summarized here).

The companion Tables 3 and 4 are capstone tables of this report. They show the
relationships between many key factors in the design of MRE foundations and
anchors, including: the geologic setting, geotechnical engineering, the relative
function (or preferred foundation or anchor type given a particular seafloor material,
where “good” means it functions well, “ok” is typically not preferred, and no listing for
a particular foundation/anchor means poor performance), relative costs for

installation, and motivating factors for sophisticated numerical modelling.
5.2 Applicable Tools and Inputs

Analytical solutions and empirical equations for general foundation and anchor
design are presented in the literature (see [28, 34]); however, the unique loading
cases and long lifetimes of MRE systems may necessitate sophisticated analyses
that relax many of the strict assumptions of the analytical solutions and provide
predictive results that empirical equations cannot. If a particular design has unique
features or is one that is judged close to some failure limit from a performance
perspective, numerical modelling may elucidate additional details of its performance
permitting a detailed assessment of its adequacy for the intended purpose instead of
only relying on the application of a larger factor of safety. Furthermore, numerical
analysis may also facilitate deeper understanding of foundation-anchor behaviour
where greater understanding is sought, not just for design, but also for the
foundation’s performance relative to other pieces of the overall system (e.g.,
changes in stiffness to the overall system as a result of the response of the
foundation). Numerical analysis an important method to address behaviour of the

nonlinear coupled nature of fluid saturated porous media.

Numerical analysis methods may be needed that can address:
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transversely isotropic (e.g., properties are uniform in horizontal directions but
different in the vertical direction) or fully anisotropic (e.g., properties vary with
direction) mechanical and fluid flow properties;

coupled fluid flow, excess (relative to hydrostatic) pore pressure increase and
dissipation, and sediment deformation;

complex geometries for the interfaces between seafloor materials and
foundation and anchors;

simultaneous mechanical and flow modelling of the seafloor material
response and the entire foundation or anchor itself;

appropriate constitutive (or material) models that capture the range of stress-
strain, yield, and failure behaviour of the relevant seafloor materials, including
dynamic, large strains, non-linear, plastic deformation, and cyclic degradation
of strength and stiffness;

failure planes, disaggregation, or liquefaction;

complex time-series for boundary conditions, which capture cyclic loading and
loads changing direction, possibly due to multiple tethering to single anchors;
aging effects due to “soaking” or re-consolidation of sediments surrounding a
drag embedment anchor after placement (see [28]);

spatially heterogeneous mechanical and fluid flow properties, including the
ability to input geostatistical realizations of property fields; and

large-scale simulations for evaluation of entire arrays in realistic tidal channels
or other heterogeneous environments to determine, for example, whether pre-
designed regular rectangular MRE device array spacing conflicts with

heterogeneity of seafloor sediments.

Commercially-available numerical modelling software has been used successfully for

over 30 years in offshore geotechnical engineering of foundations and other related

applications (e.g., for discussion of the historic use of Abaqus finite element analysis

(FEA) on consolidation, gravity-based structures, driven piles, suction piles, and

other applications, see [57]; for an example of modelling of cone penetrometer
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testing, see [58]). A variety of commercial codes applicable to marine geotechnical
engineering are available (e.g., Abaqus, Plaxis, COMSOL, ANSYS, etc.); however,
code comparison and validation has not yet been performed to determine the relative
suitably of the codes for the MRE single device or array design. Commercial codes
can offer a vast arsenal of material constitutive relations or models that can range
from elastic, hypo- to hyper-elastic, viscoelastic, to a variety of plastic behaviour.
Commercial codes also typically have an Applications Program Interface (API),
which allows a user-defined constitutive model to be incorporated into the code. The
API typically has access to the entire variety of solver options available in the code,
so that the user can thereby incorporate whatever phenomena is deemed
appropriate in the user-defined constitutive model. This capability is extremely useful
when the user does not want to be limited to the constitutive models built into the
code. Commercial codes can also incorporate separate constitutive models for the
device itself and the surrounding sediment (e.g., see [59] for an Abaqus FEA study
using linear elastic behaviour of a suction bucket foundation and elastoplastic
behaviour of the sediment). The literature has examples of incorporating
sophisticated generalized plasticity models into commercial codes for modelling
cyclic forces and complex interactions between offshore structures and marine
sediment, including non-linear behaviour with cyclic-loading-induced strength and
stiffness degradation [42].

When using numerical methods to model offshore structure/seafloor interactions, the
constitutive relations (or models) of marine sediment response are of prime
importance—even more so than the particular modelling software used, as poor
results will be obtained if an inappropriate constitutive model is used, regardless of
the modelling code. To constrain the summary of information from the literature, we
focus mainly on constitutive models that can accommodate MRE-related
phenomena, including the following: cyclic loading and associated changes in
material properties, large-strain (e.g., for structure embedment or in situ cone
penetration testing), liquefaction, and/or layered sediments, and/or cohesive and

cohesionless sediments (Table 5). Sophisticated numerical analysis, at the
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minimum, may need these types of material models. Stickle et al. [3] strongly
emphasize the need of an appropriate constitutive model to capture sediment or soil
response for marine foundations or structures. They identify cyclic loading as the
principle feature of an appropriate constitutive model. They state that classical
plasticity models, such as Von Mises, Drucker-Prager [60, 61], and Cam-Clay, do not
capture plastic deformation due to repetitive loading as the reloading-unloading
cycles are placed within the yield surface interior and thus, elastic deformations are
represented, but not plastic sediment or soil degradation with repetitive loading. The
constitutive model should capture the non-associative plasticity of the geomaterials.
Stickle et al. [3] list a variety of approaches to improve upon classical plasticity
theory models, including the re-modified Cam-Clay model, isotropic-kinematic
hardening plasticity models, bounding surface models, bubble models, and
generalized plasticity models. They prefer generalized plasticity models because
yield or potential surfaces are not explicitly defined, but rather gradients in those
functions, and furthermore, because of the combination of simplicity and accuracy of
these models. Table 5 presents several constitutive models of sediment response to
loads from offshore structures, with literature sources for cyclic loading and large
strain examples [3, 40-43, 55, 58-63].

The constitutive models require parameterization or material parameters to properly
represent the sediment or rock response. This is a primary input for the numerical
modelling, in addition to boundary conditions and geometrical considerations. Such
parameterization typically requires data to be collected from in-situ field testing or,
probably most commonly, from laboratory testing of sophisticated sediment response
behaviour. The initial stress state may also be required. The number of parameters
depends on the particular constitutive model (see Table 5, showing that some
require 8 and as many as 15, for the examples given). For example, the Hu et al.
[42] bounding surface plasticity model requires four parameters related to critical
state soil mechanics and four for the hardening modulus. Table 6 summarizes a

subset of the constitutive models of Table 5 that capture cyclic sediment response,
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with listing of the parameters needed and the types of laboratory or field testing

required.

Geotechnical laboratory testing can be labor intensive, involving many samples and
stress paths. Testing may involve the following (also see Table 6): cyclic simple
shear and cyclic triaxial (or truly triaxial) with loading-unloading-reloading paths;
reduced triaxial compression; measurement of pore-water-pressure; or centrifuge or
shaking table sediment response measurements. A complete discussion of specific
parameters and associated tests is beyond the scope of this report; we simply note
that sophisticated numerical modelling may involve commensurate sophisticated
laboratory or field testing. We also note that geological materials can be very
spatially heterogeneous, depending on the geologic environment. A very involved
(and potentially expensive) field sampling and laboratory testing plan may be
required to capture heterogeneous properties necessary for numerical modelling that

incorporates spatially varying properties.

Future research needs to determine what specific constitutive models are relevant
for novel MRE systems, for the MRE cyclic and other loading cases (see Table 2),
and what laboratory or field testing will give the required parameters. The peer-
reviewed literature does not yet seem (as far as we can tell) to have a study on what
constitutive models are most appropriate for sophisticated numerical modelling MRE
analyses, which tackle the complex examples given in the bulleted list above.

Commercial numerical codes are mainly suited for running on desktop computers
and/or typical engineering workstations. Simulations with commercial codes are by
design limited to problem sizes on the order of hundreds of million degrees of
freedom, or so. This allows for simulating the sediment and the structure. However,
MRE studies may require very sophisticated simulations, such as those tackling
some of the problems listed above, including: full spatial (and temporal)
heterogeneity in fluid flow and mechanical properties; complex geometries of a
variety of interfaces (e.g., device-sediment, device-seafloor); and full-scale, entire

MRE device arrays of up to 1000s of devices. Only massively parallel architecture
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and software specifically designed for such architectures can handle such problems
with complex heterogeneous multiphysics. These massively parallel systems may
accommodate more degrees of freedom than can be handled by the commercial
codes by several orders of magnitude. Systems such as these are generally only
available at some governmental institutions and large companies in the oil and gas
industry. Although commercial software may have certain specific coupling
capabilities (e.g., Abaqus/Aqua capabilities in Abaqus/Standard to model wave,
buoyancy, current and wind loading), full coupling of computational fluid dynamics of
open ocean water interaction with mooring systems, the device operation, and the
sediment-foundation/anchor interaction is probably beyond current computational
abilities. Thus, loads for seafloor material-foundation/anchor interaction require
boundary conditions from other sources, such as separate simulations by other
methods for the loads or measurements from the field. While not ideal, this may be
advantageous for the foundation and/or anchor designer in that it permits the focus

to remain on the foundation and/or anchor analysis and design.

It needs to be emphasized that there are a number of numerical software solutions,
both commercial codes as well as academic codes that can adequately model
offshore sediments under a cyclic loading regime that would be applied as a result of
the interaction between an MRE foundation or mooring. However, it is of the utmost
importance that appropriate constitutive models be utilized in the numerical

simulation.
5.3 Systems-level Decision Tool for MRE Arrays Design

The DTOcean project [6] is developing a system-level tool for MRE array design that
will take input criteria about a site and devices and undertake analysis of several
interlinked aspects of MRE array design, including the following: array layout,
moorings and foundations, power systems, system control, and operation. The tool
may include several submodules to analyse the numerous assessment criteria,

including: reliability, economics, environmental impact, lifecycle logistics (including
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installation, operations, maintenance and decommissioning) as well as physical

performance (e.g., power generation) of the particular type of array configuration.

This report supports the development of a foundation/anchor and sediment response
submodule of Work Package 4 of the DTOcean project’s future system-level tool on
mooring and foundations by assembling information that may become part of the
submodule. The submodule should probably include the major processes or
phenomena detailed in the flow chart of Figure 5, from site selection, surveys, to
analysis and design of foundations and anchors and predicting sediment response.
Equations in the submodule will need to capture the relevant physics of single to full-
scale arrays of multiple devices. Interactions of multiple devices may need to capture
excess pore development, local loads due to location in an array, and varying
seafloor material properties due to heterogeneity and time-dependent processes,
and potential impacts of cascading failure for different anchor types (e.g., overturning
of foundations versus pullout of anchors). As detailed in Sections 2 and 5, a variety
of inputs and analytical or numerical techniques exist to design the foundations and
anchors and predict physical performance. The system-level tool, however, will
probably not be able to run numerical models directly due to long run times:
response surfaces or reduced-order models will probably be necessary so that run
times of the system-level tool will be reasonable (for an example of developing
reduced order models for sensitivity and uncertainty analysis from the field of
geologic CO, storage, see [64]). Rapid run times of the system-level tool could
incorporate probability density functions of parameters and examination of system
performance (e.g., physical or economic) and sensitivity to model inputs, thus
determining what parameters have the greatest control on desired system-level

behaviour.

6. CONCLUSIONS AND RECOMMENDATIONS

The hydrodynamic performance of MRE device arrays is probably easiest to

optimize using regular spacing, which may not be commensurate with seafloor
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complexity. The marine geological environment can be very heterogeneous in terms
of seafloor topography (e.g., due to bedforms), distribution of material mechanical
and flow fluid properties of sediments, and sediment types. Thus, numerical analysis
may be necessary to understand and predict foundation/anchor and sediment
interactions and hence the performance of the MRE devices in an array
configuration. The state of the art for geotechnical commercial codes for numerical
analysis is able to incorporate sophisticated constitutive models (e.g., involving
general plasticity models) of sediment response, even including stiffness and
strength degradation due to cyclic loading. However, commercial codes, typically
run on engineering workstation computers, do not have the degrees of freedom
necessary to simulate full-scale MRE device arrays for 100s to 1000s of devices in
heterogeneous geologic environments. Massively parallel architecture and software
specifically designed for such architectures could handle full-scale simulation of
foundation/anchor and sediment response for 1000s of MRE devices with
heterogeneous multi-physics involving the geomechanics of the sediments, fluid
flow, and the mechanics of the devices themselves. Future work for sophisticated
analysis of MRE foundations, anchors, and sediment response thus requires
sophisticated field and/or laboratory testing to parameterize constitutive models, and
to possibly utilize massively parallel simulations if the behavior of full scale arrays in
complex geologic environments, like tidal channels, is desired. Laboratory testing for
cyclic sediment response needs to reflect the particular loading conditions of MRE
systems, including possibly stochastic or spectral oscillations to represent realistic
loading [3]. Massively parallel computers are not readily available; governmental
institutions or large oil and gas companies, which have such capabilities, may need
to get involved if such studies are deemed necessary. With this being said, much
can be learned about the behavior of individual devices and seafloor response using
commercial software or even analytical solutions with factors of safety used to
account for performance and/or reliability uncertainties. The choice for using

sophisticated numerical analysis may derive from the need to avoid strict
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assumptions of analytical solutions and to facilitate deeper understanding of the

performance of full-scale MRE arrays.
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